Methods in Analysis: The Riesz-Thorin interpolation theorem

In this notes we give a proof of the Riesz-Thorin interpolation theorem. This theorem can be used, for example, to prove the Hausdorff-Young inequality, which establishes that the Fourier transform can be extended in a unique way as a continuous linear map $\hat{\cdot} : L^p \to L^{p'}$ for all $1 \leq p \leq 2$. Here and throughout these notes, we use the notation L^p to indicate $L^p(\mathbb{R}^n)$ and prime indices like p' will always indicate the dual of the index p, defined by the condition $1/p + 1/p' = 1$.

Theorem 1. Let $1 \leq p_0, p_1, q_0, q_1 \leq \infty$, and $\theta \in (0, 1)$. Define $1 \leq p, q \leq \infty$ by

\[
\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}, \quad \frac{1}{q} = \frac{1-\theta}{q_0} + \frac{\theta}{q_1}.
\]

If T is a linear map with

\[
T : L^{p_0} \to L^{q_0}, \quad ||T||_{L^{p_0} \to L^{q_0}} = N_0
\]

\[
T : L^{p_1} \to L^{q_1}, \quad ||T||_{L^{p_1} \to L^{q_1}} = N_1
\]

then we have

\[
||Tf||_q \leq N_0^{1-\theta} N_1^\theta ||f||_p
\]

for all $f \in L^{p_0} \cap L^{p_1}$. Hence T extends uniquely as a continuous map from L^p into L^q, with $||T||_{L^p \to L^q} \leq N_0^{1-\theta} N_1^\theta$.

Remark 2. The two maps $T : L^{p_0} \to L^{q_0}$ with $||T||_{L^{p_0} \to L^{q_0}} = N_0$ and $T : L^{p_1} \to L^{q_1}$ with $||T||_{L^{p_1} \to L^{q_1}} = N_1$ are, strictly speaking, two different maps that agree on $L^{p_0} \cap L^{p_1}$. For $1 \leq p_0, p_1 < \infty$, this is equivalent to saying that there exists a map $T : L^{p_0} \cap L^{p_1} \to L^{q_0} \cap L^{q_1}$ with

\[
\sup_{f \in L^{p_0} \cap L^{p_1}, ||f||_{p_0} \leq 1} ||Tf||_{q_0} = N_0, \quad \text{and} \quad \sup_{f \in L^{p_0} \cap L^{p_1}, ||f||_{p_1} \leq 1} ||Tf||_{q_1} = N_1.
\]

In fact, if this is true (and if $1 \leq p_0, p_1 < \infty$), T can be uniquely extended to continuous linear maps $T_0 : L^{p_0} \to L^{q_0}, T_1 : L^{p_1} \to L^{q_1}$ such that $||T_0|| = N_0$, $||T_1|| = N_1$, and $T_0 f = T_1 f = T f$ for all $f \in L^{p_0} \cap L^{p_1}$.

Remark 3. If $f \in L^{p_0} \cap L^{p_1}$ and p is defined by $1/p = (1-\theta)/p_0 + \theta/p_1$, then $f \in L^p$ and $||f||_p \leq ||f||_{p_0}^{1-\theta} ||f||_{p_1}^\theta$. This fact can be proven by Hölder’s inequality.

Remark 4. If we associate a point $(1/p, 1/q)$ to every pair of indices $1 \leq p, q \leq \infty$, the theorem states that, if T defines a continuous map from L^{p_0} into L^{q_0} and from L^{p_1} into L^{q_1}, then it also maps continuously L^p into L^q for all p, q such that the point $(1/p, 1/q)$ lies in the segment between $(1/p_0, 1/q_0)$ (the convex hull of the two points $(1/p_0, 1/q_0)$, $(1/p_1, 1/q_1)$).

The proof of the Riesz-Thorin interpolation theorem is based on the following simple Lemma.

Lemma 5 (Hadamard three line lemma). Let $S = \{ z \in \mathbb{C} : 0 \leq \text{Re} z \leq 1 \}$ and $F : S \to \mathbb{C}$ be bounded and continuous on S and analytic on the interior S_0 of S. Let $M_\theta = \sup_{\theta \in \mathbb{R}} |F(\theta + iy)|$. Then we have $M_\theta \leq M_0^{1-\theta} M_1^\theta$ for all $\theta \in [0, 1]$.

Proof. Without loss of generality, we can assume that $M_0 = M_1 = 1$. Otherwise we replace F by the function $\phi : S \to \mathbb{C}$ defined by $\phi(z) = F(z)/(M_0^{-1}M_1^*)$. By the assumptions on F, it follows that ϕ is continuous and bounded on S (because $|\phi(z)| \leq |F(z)|/(M_0^{-1}\Re z M_1^* \Re z) \leq |F(z)|/(\min(1, M_0) \min(1, M_1))$ and M_0, M_1 cannot be zero) and analytic on S_0, with $\sup_{\Re z = 0} |\phi(z)| = \sup_{\Re z = 1} |\phi(z)| = 1$. Hence, we can assume that

$$\sup_{\Re z = 0, 1} |F(z)| = 1$$

and, under this assumption, we need to show that

$$\sup_{z \in S} |F(z)| \leq 1.$$

To this end, we define the sequence $F_n(z) = F(z)e^{z^2/n}e^{-1/n}$ and we observe that $|F_n(z)| \leq |F(z)|$ for all $z \in S$; in particular, $\sup_{z = 0, 1} |F_n(z)| \leq 1$. Moreover, $F_n(z)$ is analytic in S_0 for all $n \geq 1$, and $|F_n(x + iy)| \to 0$, as $|y| \to \infty$, for every fixed n, uniformly in x. Hence, we obtain that

$$\sup_{z \in S} |F_n(z)| \leq 1$$

for every $n \geq 1$, because analytic functions attain their maximum and minimum on the boundary of any compact set (consider the compact domain $K = \{z : \Im z \leq \kappa, 0 \leq \Re z \leq 1\}$, where κ is so large that $|F_n(x + iy)| \leq 1$ for all $|y| \geq \kappa$, and $x \in [0, 1]$). Since $|F_n(z)| \to |F(z)|$ as $n \to \infty$, it follows that $|F(z)| \leq 1$ for all $z \in S$.

Proof of the Riesz-Thorin interpolation theorem. We consider the case $p < \infty$ and $q > 1$ only. For $1 \leq p_0, p_1 < \infty$, we know that continuous compactly supported functions are dense in $L^{p_0} \cap L^{p_1}$ (with respect to the norm $\|\cdot\|_{L^{p_0} \cap L^{p_1}} = \|\cdot\|_{p_0} + \|\cdot\|_{p_1}$). Since compactly supported continuous functions are uniformly continuous, it follows that they can be approximated by compactly supported step-functions taking only finitely many values (divide the support into sufficiently small cubes, and replace, within each cube, the function by its average). Hence, it is enough to show that

$$\|Tf\|_q \leq N_0^{1-\theta}N_1^\theta\|f\|_p$$

(1)

for every compactly supported step function f. In fact, if we assume (1) then, for a general $f \in L^{p_0} \cap L^{p_1}$ (1 \leq p_0, p_1 < \infty), we can find a sequence f_n of compactly supported step functions such that $f_n \to f$ in $L^{p_0} \cap L^{p_1}$, which implies that $f_n \to f$ in L^{p_0} and $f_n \to f$ in L^{p_1}. Thus, using Remark 3, we find

$$\|Tf\|_q \leq \|T(f - f_n)\|_q + \|Tf_n\|_q \leq \|T(f - f_n)\|_{q_0}^{1-\theta}\|T(f - f_n)\|_{q_1}^\theta + N_0^{1-\theta}N_1^\theta\|f_n\|_p \leq \|T(f - f_n)\|_{q_0}^{1-\theta}\|T(f - f_n)\|_{q_1}^\theta + N_0^{1-\theta}N_1^\theta\|f_n\|_p + N_0^{1-\theta}N_1^\theta\|f\|_p$$

(2)

and since the second term in the parenthesis tends to zero, as $n \to \infty$, we conclude that $\|Tf\|_q \leq N_0^{1-\theta}N_1^\theta\|f\|_p$ for all $f \in L^{p_0} \cap L^{p_1}$.

Note that also in the case $1 \leq p_0 < p_1 = \infty$ (and in the symmetric case $1 \leq p_1 < p_0 = \infty$) it is enough to show (1) for compactly supported step functions; in fact, in this case, it is still possible to find a sequence f_n of compactly supported step functions so that $\|f_n - f\|_{p_0} \to 0$ as $n \to \infty$ and
\[\|f_n - f\|_\infty \leq 2\|f\|_\infty. \] Since \(\theta < 1 \) (by the assumption \(p_0 < p_1 \)), this is still enough to show that the second term in the parenthesis on the r.h.s. of (2) vanishes, as \(n \to \infty \) (observe that the case \(p_0 = p_1 = \infty \) is excluded by the condition \(p < \infty \)).

In order to show (1), we use that
\[\|v\|_q = \sup_{\|g\|_{q'} \leq 1} \left| \int g v \right| \]
where \(q' \) is the dual index to \(q \). Using the density of the compactly supported step functions in \(L^{q_0} \cap L^{q_1} \), we see that it is enough to show that
\[\left| \int g Tf \right| \leq N_0^{1-\theta} N_1^\theta \] for all compactly supported step functions \(f, g \) with \(\|f\|_p = \|g\|_{q'} = 1 \).

To prove (3), we write \(f = \sum_{j=1}^n a_j \chi_{A_j} \), where \(a_1, \ldots, a_n \in \mathbb{C}, A_1, \ldots, A_n \) are measurable, pairwise disjoint subsets of \(\mathbb{R}^n \), and \(\chi_A \) denotes the characteristic function of the set \(A \). Analogously, we write \(g = \sum_{\ell=1}^m b_\ell \chi_{B_\ell} \), with \(b_1, \ldots, b_m \in \mathbb{C} \) and \(B_1, \ldots, B_m \) measurable and pairwise disjoint.

Note that
\[\|f\|_p = \sum_{j=1}^n |a_j|^p \lambda(A_j) = 1, \quad \|g\|_{q'} = \sum_{\ell=1}^m |b_\ell|^{q'} \lambda(B_\ell) \] (4)
where \(\lambda(.) \) denotes Lebesgue measure.

For \(z \in \mathbb{C} \) we define the functions \(p(z), q'(z) \) by
\[\frac{1}{p(z)} = \frac{1}{p_0} + \frac{z}{p_1}, \quad \frac{1}{q'(z)} = \frac{1}{q'_0} + \frac{z}{q'_1} \]
Observe that \(p(0) = p_0, p(1) = p_1, p(\theta) = p \), and \(q'(0) = q'_0, q'(1) = q'_1, q'(\theta) = q' \). Using \(p(z) \) and \(q'(z) \) we define the functions
\[f_z(x) = |f(x)|^{\frac{p(z)}{p}} \frac{f(x)}{|f(x)|}, \quad g_z(x) = |g(x)|^{\frac{q'(z)}{\theta}} \frac{g(x)}{|g(x)|} \]
with the convention that \(f(x)/|f(x)| = 0 \) if \(f(x) = 0 \). For every \(z \in \mathbb{C} \), \(f_z \) and \(g_z \) are compactly supported step functions (of \(x \)) given by
\[f_z(x) = \sum_{j=1}^n |a_j|^{\frac{p(z)}{p}} \frac{a_j}{|a_j|} \chi_{A_j}, \quad g_z(x) = \sum_{\ell=1}^m |b_\ell|^{\frac{q'(z)}{q'}} \frac{b_\ell}{|b_\ell|} \chi_{B_\ell} \] (5)
In particular, \(f_z \in L^{p_0} \cap L^{p_1} \) for every \(z \in \mathbb{C} \) and therefore \(T f_z \in L^{q_0} \cap L^{q_1} \) is well-defined and can be integrated against the function \(g_z \in L^{q'_0} \cap L^{q'_1} \). We set
\[F(z) = \int g_z T f_z. \]
Using (5), we obtain the representation
\[F(z) = \sum_{j=1}^n \sum_{\ell=1}^m |a_j|^{\frac{p(z)}{p}} \frac{a_j}{|a_j|} |b_\ell|^{\frac{q'(z)}{q'}} \frac{b_\ell}{|b_\ell|} \int_{B_\ell} T \chi_{A_j}. \]
We see that F, as a function of z, is a linear combination of terms of the form γz, for appropriate positive γ’s. Hence F is bounded and continuous on the strip $S = \{ z \in \mathbb{C} : 0 \leq \text{Re } z \leq 1 \}$ (because $|\gamma z| = \gamma \text{Re } (z) \leq \max(1, \gamma)$ for every $z \in S$) and it is analytic on the interior S_0 of S. Therefore we can apply Lemma 5 to $F(z)$. It implies that

$$M_\theta = \sup_{y \in \mathbb{R}} |F(\theta + iy)| \leq M_1^{1-\theta} M_1^\theta$$

and therefore, since for $z = \theta$, we have $f_{z=\theta} = f$ and $g_{z=\theta} = g$, we find

$$\left| \int g T f \right| = |F(\theta)| \leq M_\theta \leq M_1^{1-\theta} M_1^\theta.$$ \hspace{1cm} (6)

We still have to compute M_0 and M_1. To compute M_0 we estimate

$$|F(iy)| = \left| \int g_{iy} T f_{iy} \right| \leq \| T f_{iy} \|_q \| g_{iy} \|_{q_0'} \leq N_0 \| f_{iy} \|_p \| g_{iy} \|_{q_0'}.$$

By definition, we have

$$\| f_{iy} \|_p^{p_0} = \sum_{j=1}^n |a_j|^{p_0} \lambda(A_j) = \sum_{j=1}^n |a_j|^p \lambda(A_j) = \| f \|_p^p = 1$$

and

$$\| g_{iy} \|_{q_0'}^{q_0'} = \sum_{\ell=1}^m |b_{\ell'}|^{q_0'} \lambda(B_{\ell'}) = \sum_{j=1}^m |b_{\ell'}|^q \lambda(B_{\ell'}) = \| g \|_{q'}^q = 1$$

and therefore $|F(iy)| \leq N_0$ for all $y \in \mathbb{R}$, which implies that $M_0 \leq N_0$. Similarly, to bound M_1, we compute

$$|F(1 + iy)| = \left| \int g_{1+iy} T f_{1+iy} \right| \leq \| T f_{1+iy} \|_{q_1} \| g_{1+iy} \|_{q_1'} \leq N_1 \| f_{1+iy} \|_{p_1} \| g_{1+iy} \|_{q_1'}.$$

where

$$\| f_{1+iy} \|_{p_1}^{p_1} = \sum_{j=1}^n |a_j|^{p_1} \lambda(A_j) = \sum_{j=1}^n |a_j|^p \lambda(A_j) = \| f \|_p^p = 1$$

and

$$\| g_{1+iy} \|_{q_1'}^{q_1'} = \sum_{\ell=1}^m |b_{\ell'}|^{q_1'} \lambda(B_{\ell'}) = \sum_{j=1}^m |b_{\ell'}|^q \lambda(B_{\ell'}) = \| g \|_{q'}^q = 1$$

which implies that $M_1 \leq N_1$ and, by (6), completes the proof of (3). \hfill \Box